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Abstract
I attempt to replicate the phonological patterns displayed in English plural voicing alter-

nations in language models. In general, the degree to which models replicate human judge-
ments can measure their knowledge about phonology. The experiments in this paper provide
additional insight because the English voicing alternation is an example of surfeit of the stim-
ulus, a phenomenon where speakers’ productions disregard a statistical pattern of their lan-
guage in favor of a more natural universal phonological pattern. Previous work has shown
that language models are extremely attentive to statistical patterns, often at the expense of
human cognitive biases. This tendency would suggest that language models will struggle to
replicate phenomena that demonstrate surfeit of the stimulus. Thus, the experiments of this
paper attempt to investigate this hypothesis. I find that the models tested perform roughly
similarly on inferring voicing acceptability ratings for English words andwugwords, demon-
strating some ability to replicate humans’ surfeit of the stimulus. However, this replication
may be spurious due to insufficient exposure to the English lexicon and poor performance
relative to naive baselines. I further demonstrate that pretraining and adding wug words to
phonological training sets may improve replication of surfeit of the stimulus phenomena.

1 Introduction
The lexicons of languages display many phonological patterns that may not be synchronically
motivated. For instance, they may occur due to historical sound changes, extensive borrowing,
or sheer coincidence. Simultaneously, these patterns may run contrary to universal and natu-
ral phonologically tendencies. Such a phenomenon is observed in English noun plural voicing
alternations, as described by Becker, Nevins, and Levine (2012). In the English lexicon, monosyl-
labic nouns ending in a voiced fricative are more likely to be voiced in their plural forms than
similar polysyllables. However, a proposed cross-linguistic phonological generalization is that
initial syllables are more faithful that non-initial syllables (Alber 2001; Casali 1998), a phenom-
ena seemingly contradicted by this subset of the English lexicon. Becker, Nevins, and Levine
(2012) demonstrate, however, that English speakers do adhere to the cross-linguistic generaliza-
tion when presented with wug words. This lack of generalization between the lexicon and new
productions is termed “surfeit of the stimulus” (Becker, Ketrez, and Nevins 2011).

Adhering to a surfeit of a stimulus phenomena requires some linguistically-universal cogni-
tive bias. Simultaneously, it require the ability to not adhere rigidly to the statistical patterns
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of stimuli. Thus, this phenomenon appears one that would be difficult for a statistical model to
learn. One such model is a language model which is trained to predict sequences of words. They
have also been used as phontactic learners by Mayer and Nelson (2020) in order to judge the
acceptability of phonetic sequences in a language. These learners typically adhere to the statisti-
cal tendencies of their input data, sometimes in opposition to human behavior that is ingrained
or learned from little to no examples (Li et al. 2016; Ponti et al. 2019). Given these tendencies,
in this paper I perform a set of experiments to measure how well these models can exhibit the
surfeit of the stimulus phenomena demonstrated in English noun pluralization.1 Some of these
experiments mimic those done by Becker, Nevins, and Levine (2012) but with language models as
subjects rather than humans. I find that the models surprisingly perform similarly in predicting
English and wug word voicing acceptability, although still substantially worse than human raters
and similar to naive baselines. Additionally, I find that pretraining and introducing wug words in
model training stages may help them ingrain otherwise difficult to learn phonological universals.

2 Methodology
Each experiment in this paper involves training and evaluating language models with English
voicing alternating nouns and wug words. Traditionally, language models are trained on se-
quences of words with no access to constituents of the words like segments or syllables. However,
language models are a generalization of models that operate on generic sequences. Thus, they
can be used to process or produce sequences of phonological segments as was done by Mayer
and Nelson (2020).

2.1 Corpora
The datasets used in this paper originate from two sources: the CMU Pronouncing Dictionary
and Becker, Nevins, and Levine (2012). The CMU Pronouncing Dictionary contains pairs of or-
thographic words and their IPA transcribed forms, sometimes including multiple phonetic forms.
This phonetic transcription includes vowel length, primary stress, and secondary stress. Primary
stress, where indicated, is included in some experiments; vowel length and secondary stress is
removed for all experiments.

Experiments 1 and 2 in Becker, Nevins, and Levine (2012) include two corpora. The first
experiment contains 126 English singular nouns ending in either [f] or [θ]. These words are pro-
vided in orthographic form so I look up the phonetic form via the CMU Pronouncing Dictionary.
Experiment 2 of Becker, Nevins, and Levine (2012) contained 132 wug words that ended in either
[f] or [θ]. These are provided in phonetic form, with primary stress information that is used in
some of the experiments in the paper. Becker, Nevins, and Levine (2012) provided each word to
human participants who rated acceptability between voiced and voiceless plural versions of the
word on a 1 (voiceless) to 7 (voiced) scale. Notably, English words demonstrate greater variation
in voicing acceptability ratings, having a standard deviation of 1.60 compared to 0.771 for the
wug words. This increased variation should make the English voicing acceptability ratings more
difficult to infer than the wug voicing ratings.

1The code written for these experiments can be found at https://github.com/TovlyDeutsch/
215ProjectPublic.

2

https://github.com/TovlyDeutsch/215ProjectPublic
https://github.com/TovlyDeutsch/215ProjectPublic


2.2 Model
The model used in this paper is based on the one described by Mayer and Nelson (2020). At
its core, it involves an embedding layer followed by a simple recurrent neural network (RNN)
optimized during training by the Adam algorithm (Kingma and Ba 2015). The embedding layer
transforms each input phonetic token into a vector which is then fed into the RNN. As the model
is based on a recurrent neural network, the model can accept as input sequences of any length.
In addition to this core, I add a final linear layer that takes the final vector output of the RNN and
produces a singular numeric output that represents a voicing acceptability rating. The hyperpa-
rameters of the model were selected via manual trial and observation of modifying the existing
hyperparameters of Mayer and Nelson (2020). They consist of minibatches of size 64, an embed-
ding layer of size 24, an RNN hidden dimension of size 64, 4 layers in the RNN, a learning rate of
0.005, and 100 epochs of training.

2.3 Pretraining
In some of the experiments of this paper, the model is optionally pretrained before the fine-tuning
step. In this process, the model is first trained like a language model to predict segment sequences
on a large generic corpus, in this case the CMU Pronouncing Dictionary. After this pretraining
is completed, all of the model weights are frozen, except for the weights in the final linear layer.
Then, the model is trained on the smaller training dataset relevant to the task, e.g. a set of English
nouns. The goal of this pretraining process is to give the model a generic sense of language as a
whole with the hypothesis that this knowledge will the help the model perform on some more
data-poor task.

2.4 Evaluation
Mean over multiple runs Each training and evaluation cycle of a model has two sources of
stochasticity: the random split between test and training data and the stochastic nature of the
initialization and optimization algorithms. To account for this stochasticity, each time a model
is trained and evaluated in this paper, this training and evaluation is repeated 1000 times and
the results presented are averages over these runs. Ordinarily, such repetition is infeasible for
neural networks because of the extremely long training time; however, the datasets used in this
paper are small enough that this did not become an issue. Repeated tests also allow for signif-
icance tests between the performance figures of different model types, an analysis employed in
the experiments of this paper.

Evaluationmetric For each evaluation, themetric employed is rootmean squared error (RMSE).
Squaring the error (the difference between the true and inferred result) has the effect making all
error positive and thus isolating its magnitude. Squaring the result also places greater penalties
on greater deviations, e.g. a raw increase of error by 1 unit from a larger error will have a greater
effect on squared error than that same increase of 1 unit starting from a smaller error. The square
root is taken finally in order to bring the units of the error measurement in line with the units
originally used for the labels and inferences.
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Comparisons against naive mean baselines For each experiment in this paper, the result
from a naive mean baseline model is provided. This naive baseline simply takes the mean label
of the training data and constantly outputs this mean as its inference during evaluation. This
baseline serves as comparison for how well models are gaining knowledge of the specific tasks
as opposed to simply mimicking mean values.

3 Experiments

3.1 Experiment 1a: Replicating English Voicing Acceptability Ratings
The first experiment attempts to replicate experiment 1 from Becker, Nevins, and Levine (2012),
albeit with language model inferences rather than human acceptability judgements. Specifically,
the model is fine-tuned on a training subset of 80% of the English voicing alternating nouns given
by (Becker, Nevins, and Levine 2012) 2. These words are labeled with human acceptability judge-
ments of the plural, between 1 (voiceless) and 7 (voiced). After training, the model is evaluated
on the remaining 20% of the provided English nouns by tasking the model with inferring voicing
acceptability ratings for input words in IPA form.

In addition to this basic paradigm, the model is optionally augmented with pretraining or
stress information. For pretraining, the model is first trained as a language model on all words
(as segment sequences) in the CMU Pronouncing Dictionary. Then, all weights of the model are
frozen except the final linear layer before it is fine-tuned on the English nouns. For the stressmod-
ification, the pretraining and fine-tune datasets are augmented with markers of primary stress.

Table 1 displays model evaluation results with various combinations of pretraining and stress
inclusion. Table 2 displays significance comparisons between the RMSE of different model types.
All of the models performed significantly better than the naive mean baseline, indicating they are
learning about the specific task of voicing acceptability inference to some degree. However, this
improvement over the baseline is quite small, ranging from 0.01 to 0.04. Additionally, many of
the model types did not vary significantly with respect to one another indicating that pretraining
and stress inclusion may not be especially useful for this task.

Pretraining Primary stress RMSE
7 3 1.60
7 7 1.60
3 3 1.61
3 7 1.63
Naive mean baseline 1.64

Table 1: Model evaluations for experiment 1a on predicting English voicing acceptability

2The orthographic forms and voicing ratings can be found in Appendix A of the paper.
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Naive mean baseline Pretraining Stress Both
Pretraining 3

Stress 3 3

Both 3 7 7

Neither 3 3 7 7

Table 2: Pairwise significance in difference betweenmodel RSME for experiment 1a. Checkmarks
indicate significance in a Tukey HSD test (p < 0.05, n = 1000)

3.2 Experiment 1b: Augmented training forReplicating EnglishVoicing
Acceptability Ratings

One possible explanation for the poor improvements over baseline seen in experiment 1a is a
lack of data. The dataset provided by Becker, Nevins, and Levine (2012) contained only 126 items,
only 80% of which are used in training. To expand the dataset size, I extracted additional voicing
alternating nouns from the CMU pronouncing dictionary. I selected nouns that ended in [f] or
[θ] and had a plural form with only one listed pronunciation. Based on whether this plural form
had a voiced ending or not, I assigned it a voicing acceptability rating of 1 or 7. This binary rating
is crude and unlikely to be produced by speakers but on average should be strongly correlated
with their ratings. These additional examples amounted to 70 new items in the dataset.

Table 3 displays the results from this experiment with the expanded dataset. The raw losses
have increased slightly, which is unsurprising given the imprecision of the newly added examples.
More interestingly, however, is the greater improvement over the naive baseline, ranging from
0.03 to 0.08. This greater improvement implies that the additional data allows the model to gain
a better understanding of the information needed to make voicing acceptability judgements. As
with experiment 1a, pretraining and stress addition seem to be largely ineffective in improving
performance; the significance comparisons for this experiment are shown in table 4.

Pretraining Primary stress RMSE
3 3 1.68
7 3 1.69
7 7 1.69
3 7 1.72
Naive mean baseline 1.75

Table 3: Model evaluations on predicting English voicing acceptability with added examples from
the CMU Pronouncing Dictionary (experiment 1b)

Based on the results from experiments 1a and 1b, both pretraining and the application of pri-
mary stress seem to be ineffective in improving English voicing acceptability inference. However,
the RNN-based models do significantly outperform the naive mean baseline, indicating they are
gaining some knowledge (however small) about this specific inference problem.
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Naive mean baseline Pretraining Stress Both
Pretraining 3

Stress 3 3

Both 3 3 7

Neither 3 3 7 7

Table 4: Pairwise significance in difference betweenmodel RSME for experiment 1b. Checkmarks
indicate significance in a Tukey HSD test (p < 0.05, n = 1000)

3.3 Experiment 2: Wug words
After establishing that neural models had a (limited) ability to recognize English voicing alterna-
tions, I investigated whether they could extend this knowledge to the productive phonological
patterns seen in English speakers. As Becker, Nevins, and Levine (2012) showed, English speakers
tended be equally faithful in monosyllable and iambic wug words, while for real English words
they treat monosyllables less faithfully than iambs. Importantly, this asymmetry demonstrates
they fail to generalize the pattern seen in English to wug words, instead following a proposed
protection of initial syllables. Given that machine learning models are extremely attentive to
the statistical generalizations of their training data, especially without domain specific modifica-
tions, I hypothesized that these models would struggle, trained on English nouns, would struggle
to replicate this asymmetry and thus perform more poorly on wug word evaluations.

Table 5 displays the results from this experiment of training on English voicing alternating
nouns and evaluating on the wug words provided in Becker, Nevins, and Levine (2012). The
training data includes the additional nouns from the CMU Pronouncing Dictionary as described
in section 3.2. The naive mean baseline has worsened in performance because the training set
(English plurals) and test set (wug words) have a greater difference in means than in experiments
1a and 1b. The non-pretrained models perform similarly to the results seen in 1b. This may indi-
cate the models are failing to learn the generalization of greater impact in English monosyllables,
contrary to the hypothesis. However, given that these models are especially attentive to statis-
tical patterns, this failure to generalize may be a result of lack of training data rather than the
model being completely unable to capture this pattern. Thus, it is difficult to determine from this
experiment alone if the model is successfully honing in on the phonologically natural protection
of monosyllables or is simply deprived of enough English stimulus to learn the unnatural pattern
in the lexicon.

Unlike in experiments 1a and 1b, adding pretraining results in a significant improvement in
performance, as shown in table 6. This may occur because the pretraining may desensitize the
model to any unnatural patterns it attempts to learn in the fine-tuning step. Similarly, in the
pretraining stage the model may gain some understanding of the natural tendency to protect
monosyllables, if this is at all apparent in the broader English lexicon. The addition of primary
stress remains ineffective.
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Pretraining Primary stress RMSE
3 7 1.34
3 3 1.45
7 3 1.68
7 7 1.68

Naive mean baseline 2.10

Table 5: Model evaluations on predicting wug word voicing acceptability trained with added
examples from the CMU Pronouncing Dictionary (experiment 2)

Naive mean baseline Pretraining Stress Both
Pretraining 3

Stress 3 3

Both 3 3 3

Neither 3 3 7 3

Table 6: Pairwise significance in difference between model RSME for experiment 2. Checkmarks
indicate significance in a Tukey HSD test (p < 0.05, n = 1000)

3.4 Experiment 3: Adding wug words to the fine-tuning training set
Given that exposure to the English lexiconmay reducemodels’ ability to replicate speakers surfeit
of the stimulus, I wanted to investigate the addition of wug words to models’ training sets. This
approach is dissimilar to how human speakers learn language as they are generally not exposed
to wug words. However, for the specific case of a statistical phonological model, introducing
phonotactically valid wug words that demonstrate some productive phonological pattern may
help it replicate patterns not apparent in or contrary to the lexicon. Thus, this third experiment
splits the wug dataset into two halves. One half is added to the training set of English nouns. The
other half is held out as an evaluation set.

Unsurprisingly, adding wug training data helps in inferring wug ratings, as shown in table 7.
The difference in RMSE between the twomodels is significant (p < 0.05, n = 1000). Interestingly,
it seems to help the model learn to judge wugwords bymore than by simply bringing the training
mean more in line with the test set. This can be evidenced by the fact that the model with wug
words included in training demonstrate a larger difference to a naive mean baseline than the
model without wugwords in its training set. Thus, the insertion of wugwords intomodel training
sets may be an effective strategy for enforcing surfeit of the stimulus phenomena.

Wugs included in training RMSE Naive mean baseline Improvement over naive baseline
3 0.972 1.62 0.653
7 1.69 2.10 0.410

Table 7: Model evaluations on predicting wug word voicing acceptability trained with English
words and wug words(experiment 3). The two models here have different results for naive mean
baselines because they have different training sets.
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4 Conclusion
This paper explored how well neural-network-based models could replicate a surfeit of the stim-
ulus phenomenon. Specifically, I experimented with having RNN-based models undertake ex-
periments that Becker, Nevins, and Levine (2012) used to demonstrate an asymmetry in English
and wug word plural voicing. Three experiments were conducted focusing on English training
to English evaluation, English training to wug evaluation, and English and wug training to wug
evaluation. They revealed that, although these models were hypothesized to poorly predict wug
acceptability ratings, they did so comparably to English words. However, this seeming success
of the models is tempered by their absolute poor performance relative to mean baselines. This
poor performance may be due to a lack of training data, thus future work could explore the ef-
fects of training on larger sets of English nouns. Additionally, the experiments revealed that
both pretraining and adding wug words to training data can aid models in gaining universal
generalizations about languages. Such results demonstrate that despite machine learning mod-
els’ absorption with statistical pattern extraction, there exist effective techniques to imbue them
with human-like linguistic preferences.
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